
 GYROKINETIC MODELS FOR EDGE PLASMAS 
 

A.M. Dimits, R.H. Cohen, X.Q. Xu, LLNL, and the ESL Team 
 
 

 

 
 
 
 

Presented at the 2009 Sherwood Fusion Theory Conference 
May 2-5, 2009, Boulder, Colorado, USA 

 
Work performed for U.S. DOE by LLNL under Contract 

DE-AC52-07NA27344. 
 

LLNL-PRES-412698 



 
 

REQUIREMENTS 
 

 Conservative 
o particles 
o energy 
o momentum (in the absence of external forces; if translational, 

rotational, helical symmetry present) 
 

 Electromagnetic (low-; B only) 
 
 Straightforwardly implementable 

o no additional kinetic equations, e.g., for S1, etc. 
o no time derivatives on RHS 
o explicit pseudo-implementation statements for each term 
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CONSEQUENCES OF ENERGY CONSERVATION 

 
For a gyrokinetic Vlasov-Poisson or Vlasov-Maxwell system in which the 
generalized polarization term in the Poisson equation (and Ampere’s Law) is 
consistent with the actual (gyrocenter) distribution F, the Hamiltonian and phase-
space Lagrangian (Poincare-Cartan 1 form) must be evaluated to second order 
in the gyrokinetic smallness parameter GK in order for the entire system to satisfy 
energy conservation. This has been noted by Dubin and Hahm. 
 
If the distribution function in the gyrokinetic Poisson operator (and Ampere’s Law) 
(generalized polarization term) is fixed or approximated in such a way that the 
operator does not depend on the evolving (gyrocenter) distribution function, (as 
in the case of core-delta-f models) then energy conservation can be satisfied with 
particle equations of motion that keep only terms up to first-order in GK. 



Electromagnetic Gyrokinetic System of Equations for the Edge: 
Canonical representation 

 
 
References: A.J. Brizard: Phys. Plasmas 7, 4816 (2000 - variational formulation & 
conservation laws); Rev. Mod. Phys 79, 421 (2007 – review) 
 
Gyrokinetic Vlasov equation in conservation form: 
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Equations of motion: 
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Note: The first two second-order (quadratic in perturbation size) terms in H2 have 
not  The 

2
1A  term is needed for positivity of terms in energy. 

 
 
 
 
The GK Poisson’s equation has only electrostatic terms: 
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The GK Ampere’s Law has only the identity part of gyT  
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The above equations, and energy conservation, all follow from a single reduced 
variational principle and Noether’s theorem (following Brizard): 
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Conserved energy:  
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New Electromagnetic Gyrokinetic System of Equations for MFE Edge 
Plasmas: Symplectic Representation. 
 
References: A.J. Brizard: Rev. Mod. Phys 79, 421 (2007 – review); Sugama 2000: H. 
Sugama, Phys. Plasmas 7, 466 (2000). 
 
Gyrokinetic Vlasov equation in conservation form: 
 

 i R i iB F B F B F p C
t p
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Equations of motion: 
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Note: The first two second-order (quadratic in perturbation size) terms in H2 have 
not  The 

2
1A  term is needed for positivity of terms in energy. 

 
 
 
 
The GK Poisson’s equation again has only electrostatic terms: 
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The GK Ampere’s Law has only the identity part of gyT  
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Note that the key difference between the canonical and symplectic/kinetic 
representations for the electron motion is that in the radial displacement due to 
magnetic flutter and parallel streaming lies in the  RH B0b  in the canonical 
representation, while in the symplectic representation, it lies in the  
      B H pB  term. Note that we are using a low- ordering in which only the 
component of the perturbed magnetic field perpendicular to the equilibrium field 
is kept. 



 
Progress on a Gyrokinetic Coulomb Collision Operator 

A.M. Dimits and the ESL Team 
 
 
Gyrokinetic Coulomb Collision operators – some background. 
X. Q. Xu and M. N. Rosenbluth, Phys. Fluids B 3, 627 (1991) – Linear, Fourier  space, 
statistical implementation of conservation laws 
A. M. Dimits and B. I. Cohen, Phys. Rev. E 49, 709 (1994). – Linear, configuration space, 
more accurate scheme for conservation laws. 
Z. Lin – extended Dimits-Cohen operator to accurately preserve drifting Maxwellian 
A.J. Brizard: Phys. Plasmas 11, 4429 (2004) formulated bilinear (allows for field-particle 
distribution to depart from equilibrium) gyrokinetic Coulomb collision operator. 
 
 
Brizard’s paper lays a systematic basis for a bilinear gyrokinetic Coulomb collision operator. 
However, we note that for gyrokinetic turbulence and neoclassical simulation applications, it 
is important to retain the first-order (in the gyrokinetic smallness parameter) terms in the 
pull-back operator (e.g., in Brizard’s Eq. [7]. That is, there are leading order corrections to 
Brizard’s Eqs.[23] and [47].) These terms were noted and retained, e.g., by Xu and 
Rosenbluth and by Dimits and Cohen. This is because the lowest-order part of equilibrium 
distribution functions annihilates the collision operator in these applications. 
 
 



  
IMPLEMENTATION CONSIDERATIONS 

 
Computation of equations of motion (phase-space velocities) 
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CANONICAL REPRESENTATION: 
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SYMPLECTIC REPRESENTATION: 
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First-order term - given want ( , , )t R  either at each mesh node or cell 
center, or at each gyrocenter (in the case of a PIC code), as well as derivatives 
needed for the equations of motion. Can calculate directly using sampling of 
points on the gyroorbit or in Fourier space. Save for use on the 4D ( , )R  mesh. 
For a PIC code, can do this particle by particle. 

 
Second-order terms:  
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This can be calculated directly by sampling the components of    around an 
instantaneous gyro orbit or by using a Fourier decomposition and Bessel 
functions. Again, at any given t, this is a function of the 4D ( , )R  phase space. 



Second-order terms, contd.:  
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This can be calculated sampling the components of    over a double gyro orbit. 
e.g., 4-point  gyro orbit -> 10-point  - double gyro orbit 
        8-point  gyro orbit -> 36-point  - double gyro orbit 
        

 
 
Again, at any given time, 
this is a function of the 
4D ( , )R  phase space. 
            

 
 
 
 

 



GYROKINETIC POISSON EQUATION 
 

CASE 1: NEGLECT f IN OPERATOR 
 

 
Optimal first-order Pade approximant representation of Poisson operator 
 

- can give factor of 3 accuracy improvement (~7% to ~2.5% relative 
error) for 2 20 1b k     over    0 1 1b b    replacement 

- easily generalizable to multiple ion species 
- no additional computational cost. 

 
 
Multispecies Poisson/quasineutrality equation write 2 2
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Think of k  as the eigenvalue of   
 
First-order Pade approximations are convenient 

- inversion of either a Helmholtz or Poisson equation 

- Eigenvalue of inverse operator is positive, decreasing with k , and 
bounded as  k . 

 
 
The first-order Pade approximation to L-1(x):  
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A, B, C chosen to optimize the approximation. 
 
Matching the asymptotic behavior of L-1(x).e., as xØ0 gives 
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Matching x=x0  
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and the solution to the Pade-approximated version of Eq.(1.5) can be written  
formally as 
  

      
BA S
x . (1.11) 

 
 solution of a single Poisson equation (and the addition of A times the source 
field).
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Plots of ( ) ( ) ( ) 1 E x x L x  x0=0.7, 1.0, 1.5, and 104 (going from lower to upper 
curve), for single-species case 
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Plots of ( ) ( ) ( ) 1 E x x L x  x0=0.7, 1.0, 1.5, and 104 Bulk deuterium + hot deuterium + 
carbon impurities; (fb,fh,fc)=(0.8,0.1,0.1), (Tb,Th,Tc)/ Tb =(1,5,1), (Zb,Zh,Zc)=(1,1,6) 
, (Ab,Ah,Ac)=(2,2,12) Te=Tb, ï (Rb,Rh,Rc)=( 0.8,0.02,0.6), (b,h,c)=(1,5,1); 
B=1 5 and A from x0



 
Also, these can be optimized give reasonable (<7%) relative error for 0 b   . 
Improvement to <3% relative error can be obtained at some additional expense 
with an additional second-order Pade operator, which corresponds to the solution 
of a fourth-order elliptic PDE. 
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Plots of relative error for Pade approximations to the gyrokinetic Poisson operator 
optimized over a wide range of x for a single first-order Pade approximation (red curve) 
and for an optimized combination of a first-order operator followed by a second-order 
operator. 



GYROKINETIC POISSON EQUATION 
CASE 2: INCLUDE EVOLVING f IN OPERATOR 

 
 

ENERGY CONSERVATION CONSTRAINS THE OPTIONS FOR THE 
EQUATIONS OF MOTION AND POISSON EQUATIONS 

 
Options:  
 
1) Keep (a) full-F dependence or (b) an approximation to the operator with full-F 
dependence, e.g., long-wavelength approximation; Pade’ approximation. 
 
Energy conservation dictates a specific form for the Hamiltonian, given the 
particular gyrokinetic Poisson equation operator. Terms up to second-order in 
must be kept. The Hamiltonian and energy conservation relations are different 
in cases (a) and (b). 
 
2) Keep terms in Hamiltonian only up to first order. Then energy conservation 
requires a fixed-ion-background approximation/model for the gyrokinetic Poisson 
operator. There may be various possibilities for the ion background: (a)  uniform 
Maxwellian, (b) Maxwellian with a fixed nonuniform density (only),  (c) Maxwellian 
with fixed nonuniform density and temperature profiles. 



CONSTRUCTIVE PROCEDURE TO DETERMINE GYROCENTER-MOTION 
HAMILTONIAN, GIVEN THE GYROKINETIC POISSON OPERATOR 

 
If the gyrokinetic Vlasov and field equations can be derived from an 
appropriate variational principle, then this system conserves energy. 
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Conserved energy 
 

23 1 3 1
8gy i i gy gc e ed p F (H q T )- d p F (H e ) B  


      
 
Procedure – given Poisson equation (with operator Hermitian and linear 
in , construct an effective action   such that 
 

0 Poisson equation
( )



 

x


 

 
   [ ] [ ]L F S F   
  
 1

2dt dx ( x,t ) S[ F ]( x,t ) L[ F ] ( x,t )      
 
Identify this with  
 

8
i id ( ) ( )       



Then i
i

( )
( )




 
 

   identifies -dependent part of i iH ( Z ,t ) ( ) w   . 

This identification is unique (up to an additive constant) because the 
Poisson tensor is non singular. 
 



EXAMPLES – LONG-WAVELENGTH AND PADE 
APPROXIMATIONS 
 
Gyrokinetic Poisson Equation: 
 

 2
1 1

10 ( )
4

i
i R R i e

Fx d F F n
e

  
   

  
              

 0R ρ x b       

 

Pade approximation – generalization of  0
1( )

1
x

x
 

   procedure to 
inhomogeneous Fi 
 

 th0 Pade termi i
i

n S S n S
n
    

  
            

  
     

where 
1
2

e
i i

nS n p
Z       



Variational form 
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                  
   x x x x      

 

      2 12 Pade terms
2i i ed n d p n    

       x x     
 
 
Ion Hamiltonian 
 

 2 21 1 Pade terms
2 4 iH           

 
Conclusion: Gyrokinetic ion equations of motion are incompatible with the 
long-wavelength approximation to the GK Poisson (quasineutrality; 
vorticity) equation. 



FINITE-ELEMENT DISCRETIZATION OF THE GYROKINETIC 
POISSON EQUATION 

 
A straightforward discretization scheme for the full-F gyrokinetic Poisson 
equation results from a Finite-element representation, i.e., weak form + Galerkin 
representation of . All derivatives and gyroaveraging operations can be recast 
into derivatives operating on the Galerkin basis functions. 
 
Begin with gyrokinetic Poisson equation: 
 
Gyrokinetic Poisson Equation: 
 

 

   

2
1 1

1 ( )
4

;

i
R R i

e i

L S

FL x d F

S n d F d d dv B d d
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   
 

  

 



 
           

      





0R ρ x b

R ρ x R R 

  
 

  
Procedure: use Galerkin discretization of  

0
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


x

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Insert Galerkin representation      

;

i , j i , j
i , j

x;i , j y;i , j

( ) ( ) ( i, j )

x x y y
,

  

 

 

  
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 resolves derivatives onto basis functions  
 
 weak form Galerkin GK Poisson 

0
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

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 Matrix equation to be solved 
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    
 

 
 
 “Deposition” or projection from Z to x is needed to calculate the matrix elements. 
 
The resulting matrices are still sparse - for solution on perpendicular slices 
with N2 cells of size ~i, about 100 N2 nonzero matrix elements are needed (not 
N4). 
 
 



 CONCLUSIONS 
 

Gyrokinetic-based models for edge plasmas have been developed, and key 
issues in their implementation have been solved. 
 
System: Ions - electromagnetic gyrokinetic - a practical simplification of the 
electromagnetic ion terms, consistent with energy conservation, has been found; 
Electrons - drift kinetic 
 
Can neglect higher-order magnetic inhomogeneity terms 
 
Key consequence of energy conservation for edge gyrokinetic models: Working 
to second order in GK parameter (i.e., keeping time-dependent f in GK Poisson 
operator and matching second-order terms in equations of motion) is challenging. 
 

– energy conservation -> must match equations of motion to field solve    
 
Implementation issues: 
 
Have shown how to discretize – 2nd-order non-f GK Poisson equation 
                                                 – 2nd-order equations of motion 
 



Improved accurate and easily discretized Pade’ approximations to GK Poisson 
operator have been found. Questions about energy conservation for these (and 
long-wavelength approximation) need to be addressed before attempting to use 
them. 

 
Examined theory for gyrokinetic Coulomb collision operator. A correct model is 
similar to that formulated by Brizard, except that first order terms need to be kept 
in the pull-back transformation in the transformation from the gyrocenter 
distribution function to the “physical-space” distribution function before this is 
inserted into the Landau-Fokker-Planck operator. 
 
 
 
 
 
Ongoing work 
 
Develop a practical/optimal scheme for implementing a bilinear gyrokinetic 
collision operator.  
 
Develop a practical and correct way to calculate the profile-scale zonal potentials 
within a gyrokinetic treatment (c.f. recent work by Para and Catto). 


