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Abstract

Modeling of anomalous (turbulence-driven) radial transport in controlled-
fusion plasmas is necessary for long-time transport simulations. Here the 
focus is continuum kinetic edge codes such as the (2-D, 2-V) transport 
version of TEMPEST, NEO, and the code being developed by the Edge 
Simulation Laboratory, but the model also has wider application. Our 
previously developed anomalous diagonal transport matrix model with 
velocity-dependent convection and diffusion coefficients allows contact 
with typical fluid transport models (e.g., UEDGE). Results are presented 
that combine the anomalous transport model and collisional transport 
owing to ion drift orbits utilizing a Krook collision operator that 
conserves density and energy. Comparison is made of the relative
magnitudes and possible synergistic effects of the two processes for typical
tokamak device parameters.

*Prepared by LLNL under USDOE Contract DE-AC52-07NA27344.



Overview

• TEMPEST is a 5-D kinetic code to simulate edge plasmas; runnable as a 4-D 
kinetic transport code.

• In order to perform quick-running studies of combined neoclassical and 
anomalous transport, we have added the following to TEMPEST:
– a model for anomalous transport
– an upgraded Krook collision model that simultaneously conserves 

density and energy

• This approach provides a possible starting point for a future self- consistent 
turbulence and transport model, where the model transport coefficients 
would be extracted from a simultaneously running 5D simulation. 



Gyrokinetic equation has been implemented in the 
continuum TEMPEST for the edge

• GK F-equation discretized with high order (4th); Fokker-
Planck collisions

• Full-f and δf options available

• Circular & divertor geom.; 2D equilibrium potential

• Runnable as 
– 4-D for transport with F(Ψ,θ,ε,µ), or 
– 5-D for turbulence with F(Ψ,θ,φ ,ε,µ)

• Extensions planned: 
– sources/sinks

– model transport coefficients for initial anomalous transp.

– generalized GK equations (see Qin)

– optional fluid equations in same framework

– *field-aligned coordinates for evolving B
This poster



Formulation, implementation, and testing of an 
anomalous radial diffusion operator

Our goal is to add a model for turbulent transport that can be combined 
with neoclassical ion transport

• presently a diagonal transport matrix for comparison with fluid models

• longer-term goal: match arbitrary transport matrix 

Model the turbulent transport as a combination of advection and 
diffusion, as is conventionally done in fluids

– Ua, D depend on position (ψ) and velocity (v)

• specifying different velocity dependence allows separate control of “Dn” and “χ” (and 
mom. coeff.)

• advection Ua allows D(v) to be positive for all velocities 

• provides flexibility, speed (compared to coupling turbulence), and comparison to fluid 
models



Modeling the transport coefficients

Define convective coefficient
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Define diffusive coefficient
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Modeling the transport coefficients

Diagonal form of the 
transport matrix
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• For the diffusion coefficient with a simple quadratic dependence over speed (v), 
we choose

• Diffusion coefficient is non-negative over the velocity domain if 0≥α
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• Particle flux not directly dependent on the local temperature gradients
• Particle flux leads to a corresponding heat flux (specific heat)
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Anomalous radial transport: Implementation

• Velocity coordinates are (εo, µ)
– derivative at constant vvvv not the same as derivative at constant (εo, µ)

– The interpolation along µ is performed using polynomial interpolation over the 
adjacent µ cells

• Kinetic equation is now second-order differential equation in space
– boundary conditions enforced for incoming & outgoing particles at radial 

boundaries
– diffusion evaluated using a 2nd order Central Differencing Scheme

• Contribution to radial transport computed by computing moments of the flux (Γa) 
over the velocity (εo, µ) space
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Moments of the distribution function are needed to update the Maxwellian
– Numerical error in the moment computation affects        and hence, the conservative 

character of the collision term

– We avoid this by defining the local Maxwellian as a linear combination of two 
Maxwellians of known numerical moments

– is a Maxwellian corresponding to the 
local density and temperature

– model conserves energy & particle density

Krook Collision Model: Implementation

Computation of radial transport of particles and energy requires a number- and 
energy-conserving collision model. In order to have one that is reasonably fast, we 
implement an upgrade of TEMPEST's Krook model that simultaneously conserves 
energy and particle density
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• Diffusion and collision model implementations were tested on an annular 
geometry

– Non-uniform magnetic field � annulus in a tokamak geometry
– domain is periodic in the poloidal direction
– Krook collision term is computed to check conservation/cost
– initially radial/poloidal drift switched off � diffusion in an annulus

– Case I: Anomalous transport model, without Krook collision model
– Case II: Krook collision model

• Simulation parameters:
– domain width is 0.1*minor radius
– spatial grid: 16(radial) by 8(poloidal)
– Max kinetic energy (velocity space extent): 16*T
– Velocity space grid: (εo, µ ) mesh size = 42x65

Anomalous Diffusion + Krook Collision: Test case
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I. Krook collision model

– Initial state is of uniform 
density with radial 
temperature gradient

– Particle drifts disturb the 
distribution function from it’s 
initial state

– Krook collision model was 
then run on the disturbed 
state

– Krook conserves particles 
and energy (plots at the top)

– Krook relaxes the 
distribution function to a 
Maxwellian state



II. Anomalous transport model

– Initial state with radial density 
and temperature gradients

– Magnetic field is uniform

– Diffusion model is defined by a 
diffusivity (Dn) of 10 m2/s and 
conductivity(χ) of 35 m2/s

– Density, Temperature are 
initialized as exponential 
variations

• n0, T0 are the density and 
temperature at t=0

– Analytical solution computed 
using equations for 
density/temperature evolution 
outside TEMPEST
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III. Anomalous transport model

– Initial state with uniform density 
and a radial temperature 
gradient

– Non-uniform magnetic field
• annulus in a large aspect-

ratio tokamak

– Diffusion model is defined by 
a diffusivity (Dn) of 10 m2/s

– Conductivity(χ) is of the 
same magnitude as diffusivity 
for this model
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IV. Anomalous transport model

– Initial state with radial density 
and temperature gradients

– Non-uniform magnetic field
• annulus in a tokamak

– Diffusion model is defined by a 
diffusivity (Dn) of 10 m2/s and 
conductivity(χ) of 35 m2/s

– Plots at the top row show radial 
variation of poloidally averaged 
values; bottom row plots show 
poloidal variation about the local 
poloidal mean

• Density variation agrees with 
analytical expectation

• Temperature variation does not 
match analytical expectation 
exactly
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Neoclassical & Anomalous radial transport

• In this test simulation, we combine  the 
anomalous transport model with radial 
drifts and the Krook collision model. 
There is no radial electric field in this 
case, and hence the drifts are due to 
grad(B) and curv(B).

• We can see that, though the flux due to 
the drifts is much larger locally, the 
poloidally averaged radial transport due 
to the drifts is of the same order as 
anomalous transport.
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• An anomalous radial transport model in the form of a combination of 
convective and diffusive transport has been added to TEMPEST
– the model is in the form of a diagonal transport matrix; transport 

coefficients can be assigned so as to be equivalent in the highly
collisional limit to fluid models; allows comparison with fluid models

– simulations done using the model compare well with the analytical 
expectations for varying density and temperature in a ring geometry

– in the future the transport coefficients could be extracted from a 
simultaneously running 5D simulation

• The Krook collision model in TEMPEST has been upgraded to make it 
more suitable for simultaneous neoclassical and anomalous radial
transport calculations
– Krook model conserves particles and energy

Summary


