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We are developing advanced numerical methods for the kinetic 

simulation of fusion edge plasmas

Motivating Office of Science application:
Simulation of tokamak edge plasmas

• Prediction of edge turbulence is essential 
for understanding phenomena governing 
plasma confinement

• Simulation of edge turbulence requires 
kinetic models

• Kinetic models have been successfully 
used for core simulation for several years 
(GS2, GENE, GYRO), but the solution of 
edge models presents different 
algorithmic challenges

• A collaboration between ASCR and 
OFES has been established to create a 
continuum edge code

Goal of this AMR project: Develop the 
numerical algorithms needed to solve kinetic 
edge equations

ITER
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A gyrokinetic turbulence model can be developed as a nonlinear 

conservation law in a special coordinate system

particle position

field line

Gyrokinetic turbulence models predict 

particle distributions f(x,v) by neglecting 

the phase and frequency of the particle 

gyromotion about field lines.

Reduces the number of independent 

variables from 6 to 5 (plus time).

Accomplished by solving in an 

asymptotically constructed coordinate 

system, not just by “averaging out” the 

gyrophase θ

∂(B∗
‖f)

∂t
+∇R ·

(
ṘB∗

‖f
)
+

∂

∂v‖

(
v̇‖B

∗
‖f
)
= 0

Gyrocenter coordinates:

• Distribution functions are symmetric in 

gyrophase

• Magnetic moment                         is a 

constant of the motion

∇R ·
(
ṘB∗

‖

)
+

∂

∂v‖

(
v̇‖B

∗
‖

)
= 0

df

dt
=

∂f

∂t
+ Ṙ∇Rf + v̇‖

∂

∂v‖
f = 0

Vlasov:

Liouville theorem:

Conservative Vlasov:

v = (v‖, v⊥, θ)

x = (x1, x2, x3)

particle velocity

µ = mv2⊥/2B
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� Gyrocenter density (gyrophase independent)

� Polarization density (gyrophase dependent)

The gyrokinetic system is closed by the evaluation of the phase 

space velocities and the solution of a modified Poisson equation

n̄i(x) =

∫
fi(R, v‖, µ, t)δ(R− x+ ρ)B

⋆
‖dRdv‖dµdθ

x

ρ
R

ǫ0∇
2Φ(x) = e [ne(x)− Zi (n̄i(x) + ñi(x))]

The ion contribution to the charge density in the gyrokinetic Poisson 

equation is comprised of two parts:

ñi(x)

Key parameter:      

= number of 

perpendicular 

wavelengths per 

gyroradius 

k⊥ρ

∇ ·
{[

ǫ0I +
n̄i
B2

(
I − �b�b

T
)]
∇Φ

}
= ne − Zin̄i,

In the long wavelength limit k⊥ρ≪ 1 the gyrokinetic Poisson equation is

�B = B�b
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The magnetic field defines a multiblock coordinate system in 

tokamak edge geometries

Computational 

coordinates:

Physical 

coordinates:

In 2D: A poloidal slice of the plasma edge can be 

mapped to a multiblock, locally rectangular grid

Mapping

X = X(ξ)

X ξ = (ψ, θ)

Flux surface label ψ

Poloidal 

angle θ

In 3D: A toroidal component is added

� The equilibrium magnetic field 

determines a mapping from physical 

to computational coordinates

� Resulting alignment with flux 

surfaces facilitates accommodation 

of strong anisotropies in 

discretization
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We are pursuing a comprehensive approach to the development of 

algorithms addressing multiple requirements

Requirements:

� Conservation

� Low-dissipation advection

� Preservation of distribution 

function positivity

� Efficient resolution of a 

large phase space

� Robust  for high anisotropy

� Efficient implicit solves

Numerical methodologies:

� Finite volume 

discretizations applied to 

conservative formulations of 

hyperbolic and elliptic 

operators

� High-order discretization

� Limiters

� Mapped, multiblock grids

� Preconditioned iterative 

methods
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We have developed a systematic strategy for 4th-order finite 

volume discretization on mapped grids

Vi = [(i−
1

2
u)h, (i+

1

2
u)h] , i ∈ ZD , u = (1, 1, . . . , 1)

X = X(ξ) , X : [0, 1]D → R
D

G⊥,d
0 = 〈q〉

i+ 1

2
ed
=

1

hD−1

∫

Ad

q(ξ)dAξ +O(h4)

Np,q ≡ det((∇ξX)(p|e
q)),

where and

Cartesian computational grid control volumes:

Smooth mapping to physical coordinates:

∇ξ − e
d ∂

∂ξd

second-order accurate 

centered difference of

〈fg〉
i+ 1

2
ed
= 〈f〉

i+ 1

2
ed
〈g〉

i+ 1

2
ed
+

h2

12
G⊥,d
0

(
〈f〉

i+ 1

2
ed

)
·G⊥,d

0

(
〈g〉

i+ 1

2
ed

)
+O(h4).

Key elements: The average of products is obtained by the repeated application of

〈f〉
i+ 1

2
ed
= fi+ 1

2
ed +

h2

24

∑

d′ �=d

∂2f

∂ξ2d′
|i+ 1

2
ed +O(h4).

and fourth-order averages are computed using face-centered pointwise values via

∫

X(Vi)

∇x · �Fdx =
∑

±=+,−

D∑

d=1

±

∫

Ad

(NT �F )ddAξ

where                                                  in which A(p|v) 

denotes the matrix obtained by replacing the pth row 

of the matrix A by the vector v.

� Use to compute the face averages

� Use Poincaré Lemma to derive high-order estimates of                      such that the 

cell-averaged                       for constant   

〈
N
T �F
〉

i+ 1

2
ed

∇x · �F = 0

〈
N
T
〉

i+ 1

2
ed�F
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Application of the mapped grid finite volume discretization to an 

advection test problem

Physical 

coordinates

Computational 

coordinates

Example mesh from D. Calhoun and R. LeVeque, Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, 2003.

MappedAdvect.mov
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We are developing high-resolution discretizations for the 

gyrokinetic Vlasov equation

� The gyrokinetic Vlasov equation describes advection by a phase space velocity 

field that is a nonlocal function of the distribution function f :

� Dependence of the phase space velocities      and       on  f is through the 

Poisson solve

� To obtain a high-order discretization that is robust for this highly nonlinear 

system, we combine

• fourth-order, multidimensional, flux-corrected transport (FCT) spatial 

discretization

• fourth-order Runge Kutta time integration

� Based on a new PPM limiter 

• Preserves fourth-order accuracy where solution is smooth (does not reduce 

accuracy at smooth extrema like classical FCT and PPM)

• Can be combined with an FCT multidimensional limiter (Zalesak) to preserve 

distribution function positivity

∂f

∂t
+∇R ·

(
Ṙ(f)f

)
+

∂

∂v‖

(
v̇‖(f)f

)
= 0

Ṙ v̇‖
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The new PPM limiter combined with an FCT limiter preserves 

positivity while maintaining 4th order accuracy

Min vs. time for circle in solid-body 

rotation test problem

Convergence for Gaussian 

(smooth solution) test problem

Without limiter:

With limiter:

Test problem: Advection of a circle in solid-body rotation
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We have added hyperviscosity to the hyperbolic discretization

� Central discretizations require artificial dissipation for stability for 

variable coefficient & nonlinear problems 

� Our high-order physical-space hyperviscosity:

• Ensures free-stream preservation

• Is Kreiss dissipative on uniform grids

� Open question: value of the viscosity coefficient     ?

• Exploring matrix-free Arnoldi iteration on semi-discrete operator

− determines approximate limiting eigenvalues

µh5∇6xu = µh5
∑

±=+,−

D∑
d=1

D∑
s=1

±〈J−1(NT
N)ds〉i± 1

2
ed〈

∂
∂ξs
∇4xu〉i± 1

2
ed

µ
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4th-order accuracy of the gyrokinetic Poisson discretization has 

been obtained on core equilibrium geometries

Convergence of 

Hypre CG solver 

preconditioned with 

multigrid solution of 

second-order 

operator

Relative residualiter

1.18e-056

4.59e-055

1.17e-044

2.24e-043

1.19e-032

6.62e-031

*Miller et al., “Noncircular, finite aspect ratio, local equilibrium model”, Phys. Plasmas, 
Vol. 5, No. 4 (1998).

∇ ·
{[

ǫ0I +
ni
B2

(
I − �b�b

T
)]
∇Φ

}
= ρ,

Given Φ, use high accuracy quadrature to manufacture ρ such that

using a prescribed density profile ni and a magnetic field                  
from an analytically specified equilibrium model*.

Verification of 4th order convergence

Potential 
computed 

from exact ρρρρ

�B = B�b,
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We are laying the numerical foundation for a continuum edge code

needed by the fusion community

� The Edge Simulation Laboratory (ESL) is a partnership between this ASCR/AMR project 

and a companion OFES-funded effort established to develop a continuum edge code.

Physics collaborators:

• LLNL: R. Cohen, B. Cohen A. Dimits, T. Rognlien, M. Umansky, X. Xu

• General Atomics: P. Snyder, J. Candy, E. Belli

• UCSD: S. Krasheninnikov, K. Bodi

� Our algorithm research plan anticipates the needs of the ESL collaboration.

� Intermediate ESL milestones:

• 4D electrostatic (drift kinetic) in flux 

tube or simple core geometry

• 4D electrostatic in divertor 

geometry

• 4D electromagnetic with 

gyroaveraging

• 5D 

� Applied math milestones:

• Coupled 4th-order Vlasov-

Poisson on mapped grids

• Renewal proposal:

− Mapped multiblock

− Arbitrary wavelength

− Electromagnetic solver and 

implicit kinetic electrons

� The successful transfer of the algorithms in this project involves substantial software 

development (leveraged with SciDAC APDEC project). 
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Backup slides
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Gyrokinetic edge simulation requires the solution of a 

special Vlasov-Poisson system

Special characteristics:

� Distribution functions are evolved 

in gyrocenter coordinates

� Poisson equation is posed in lab 

frame (gyroaveraged charge 

density yields additional 

polarization density terms)

∂(B∗
‖fi)

∂t
+∇R ·

(
ṘB∗

‖fi

)
+

∂

∂v‖

(
v̇‖B

∗
‖fi

)
= 0

∇ ·

{[
ǫ0I +

∑

i

Zin̄i
mic

2

eB2

(
I − bbT

)]
∇Φ

}
= e

(
ne −

∑

i

Zin̄i

)
Vlasov

Poisson

fi ≡ fi(R, v‖, µ, t) Gyrocenter distribution 

functions

Φ ≡ Φ(x, t) Potential

R, v‖, µ Gyrocenter coordinates

x Lab coordinates

n̄i(x, t) =

∫
fi(R, v‖, µ, t)δ(R− x+ ρ)B

⋆
‖dRdv‖dµdθ

Gyroaveraging “push forward” / 

“pull back” between gyrocenter 

and lab coordinates

Evolution of plasma species distribution functions and potential:

ρ

x

R
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A mapped multiblock approach extends high-order 

discretizations to edge geometries

� Mapped multiblock will allow us to solve the Vlasov-
Poisson system on edge geometries, where each 
logically distinct region (core, scrape-off, private 
flux) is treated as a block

� Approach:

• Compute sufficiently accurate ghost cell values 
on smooth extensions of each block

• Use a set of control volumes such that the 
above system for the expansion coefficients is 
of maximal rank and can be solved using least 
squares.  Then evaluate the polynomial or its 
moments to obtain the ghost values

• Implement supporting infrastructure in Chombo

• Use multiblock operator evaluations to perform 
Krylov matrix-vector products combined with a 
block preconditioner for the GK Poisson solve

Mapping

Physical domain Computational domain
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Semi-implicit algorithms are needed for a fully 

electromagnetic edge model with kinetic electrons

∂fe
∂t

+∇R ·
(
Ṙfe

)
+

∂

∂v‖

(
v̇‖fe

)
= 0

The inclusion a gyrokinetic electron model

An electromagnetic edge model requires the addition solution of Ampère’s equation for 

the parallel magnetic potential:

ǫ0∇
2A‖ = e

∫
fev‖dv

Ṙ v̇‖introduces a fast time scale, since the phase space velocities  and       are each 

given in terms of a Hamiltonian expression that is inversely proportional to the 

electron mass

We will pursue two options:

� Modified mass ratio in an explicit discretization

� Semi-implicit discretization 


