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Motivation for the NEO code

• Develop a practical tool for high-accuracy neoclassical
calculations, which includes:
– Self-consistent coupled ion-electron physics
– Multiple ion species
– Poloidal correction to the potential
– General geometry
– Rotation effects
– Finite-orbit-width effects

• Provide a stepping-stone toward a full-F Gyrokinetic +
Neoclassical solver
– Serve as a framework to explore new formulations which will

allow calculation of the neoclassical Er
0

– Provide a tool for use in steady-state gyrokinetic transport
simulations: TGYRO → coupled GYRO + NEO simulations
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NEO solves a hierarchy of equations based on
an expansion of the DKP eqns in powers of ρ*i.
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The ambipolarity relation, which requires complete
cross-species collisional coupling, is preserved.

Operate on the kinetic equation with 〈∫d3v(v||/B)…〉:

The plasma maintains ambipolarity only if the momentum
conservation properties of Cab are properly maintained.
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Three model forms of the linearized collision
operator are implemented and compared.

• Connor Model

• Zeroth Order Hirshman-Sigmar Operator

• Full Hirshman-Sigmar Operator
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Connor, PP 15, 765 (1973); Hirshman & Sigmar, NF 21, 1079 (1981).
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The NEO algorithm is highly accurate and time
efficient.

• Mesh in {ri,θj}

• Legendre polynomials in ξ=v||/v

– collocation integrals done exactly

• Chebyshev polynomials in ε=v2/2
     (z=2(ε/εmax)1/2 -1, typically εmax=16vta

2)

– collocation integrals done with composite higher-
order Gauss-Legendre quadrature

• collision integrals, which are multi-scale, can be done
to high accuracy (8-10 significant digits)

⇒ Sparse matrix system:
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Verification: With the full HS collision op, NEO recovers Taguchi’s
theory, which is the most accurate analytic result in the banana
regime.

The Connor & HS0
collision ops
underestimate Qi.

Chang-Hinton theory
overestimates Qi.

GA standard parameters:
(s-α geometry)
r/a=0.5    R0/a=3    q=2
a/Ln=1      a/LT=3    T0i=T0eadiabatic ele

Hinton & Hazeltine, RMP 48, 239 (1976).

Chang & Hinton, PF 25, 1493 (1982).

 Taguchi, PPCF 30, 1897 (1988).
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With self-consistent electron dynamics, the 2nd order fluxes
have been successfully benchmarked with analytic theory.

Ambipolarity is confirmed.

Full electron-deuterium mass ratio used.

The Connor & HS0 collision ops
consistently underestimate Q.
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With NEO, we find that the Sauter model overestimates
the bootstrap current.

Hinton & Hazeltine, RMP 48, 239 (1976).

Sauter et al, PoP 6, 2834 (1999); PoP 9, 5140 (2002).

! 

u
||
B

i
=
cT

0i

Z
i
e

I

" # 
$
Z
i
e

T
0i

%&
0

%r
+
1

L
ni

+ 1$ k
i( )
1

L
Ti

' 

( 
) 

* 

+ 
, 

Standard neoclassical relation:

Dependence of ki on ε & ν*i is coupled
and difficult to predict analytically.
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Studies of the effects of impurities find that the HS
multi-species analytic theory is poor.

Hirshman & Sigmar, PF 20, 418 (1977).GA standard parameters + Carbon: ZIn0I/n0e=0.1, TI=Ti  

Comparison of 2nd order particle fluxes with analytic theory
For the NEO results, the Connor model is largely inaccurate.
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The multi-species analytic theory is qualitatively better
for Qi but still poor for QI.

QI < 0

QI > 0

Comparison of 2nd order energy fluxes with analytic theory
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The effects of rapid toroidal rotation, which introduces
0th-order density asymmetries,  are also included in NEO.

Hinton & Wong, PoP 28, 3082 (1985).

Generalize the DKEs to allow for flow speeds ~ O(vth):

determined by
quasi-neutrality

(solve w/ Newton’s method)

v → rotating frame
        speed

O(1):

formation of potential wells, which can enhance
the effective fraction of trapped particles.
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DIII-D
QH-mode*

shot#131910, t=2.35s

The effects of toroidal rotation are weak in typical
experiments.
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* Experimental data is being
re-analyzed for accuracy.
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Good overall agreement is found between NEO and NCLASS,
although NCLASS slightly underestimates |vpol|.

~30% difference ~17% difference
Mi

2=0
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Higher-order solution of the DKEs identifies a break-down of the
δf formalism due to FOW effects in the region r <  rpotato.

R0=4 m, a=1m, q=3, B0=4 T,  (n0i,T0i) ~ c1+c2exp(-c3(r/a)3), s-α geometry, adiabatic ele

Consistency check:
Verification of s.s. transport relation

Deviations from Q2i
identify the break-down

of the δf formalism
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However, for typical DIII-D plasmas, only a weak FOW
effect is found due to steep gradients in the H-mode edge.

DIII-D H-mode profiles
shot#132010, t=2.5-3.5s

Pedestal
region

Higher-order NEO results

DIII-D data provided by A. Leonard, T. Osborne, & R. Groebner.
Simulations done with s-a geometry.
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Summary: NEO provides a first-principles DKP-based
calculation of the neoclassical transport coefficients.

• Verification/analytic comparisons
– Agreement with Taguchi’s theory for the full HS collision op.
– CH theory overestimates Qi for intermediate ε.
– The Sauter model overestimates the bootstrap current.

• Comparisons w/ NCLASS
– Corrections ~17% for the bootstrap current and ~30% for vθ.

• Impurity transport
– The HS multi-species theory gives a poor prediction of the ion and

impurity fluxes.
• Rotation effects

– Generally weak in typical experiments.
• FOW effects

– Break-down of the δf formalism in the small region r < rpotato ⇒ full F
required.

– Only a weak FOW effect in the DIII-D H-mode edge.

More details: E. Belli & J. Candy, PPCF 50, 095010 (2008).


