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The TEMPEST edge simulation infrastructure 
includes a gyrokinetic Poisson solver



Reference gyroradius ρ0

The ion species number density is the sum of gyrophase-independent and gyrophase-dependent parts:
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The gyrokinetic Poisson equation

),(ˆ),(),( tntntn iii xxx +=

Poisson Equation:
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Gyroaveraged gyrocenter density:
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Polarization density (long wavelength 
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i = ion species index
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λD = Debye length scaled by L||

Normalizations:

Densities, temperatures, field, masses scaled by reference values n0,T0, B0, m0

Potential scaled by T0 / e
Lengths scaled by ρ0 and a reference parallel scale length L||

Normalized GK Poisson equation:



Mapping physical to flux coordinates introduces spatially 
varying coefficients into the GK Poisson operator

Computational domain

Physical 
domain

mapping

Poloidal angle θ

Flux surface          
label ψ
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where

The mapped GK Poisson equation thus takes the form:

where

Metric factors arise in the GK Poisson differential terms, for example:



The coefficients arising from the metric factors and 
meshing are highly anisotropic 



The GK Poisson equation is discretized using centered 
differencing
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Consider a uniform grid with cells indexed by (k,m) of size (Δψk,Δθm).  We average the GK Poisson 
equation over each cell and apply the divergence theorem
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where Γk±1/2 and Γm±1/2 are the faces of cell (k,m).  The fluxes F(j)
k±1/2,m and G(j)

k,m±1/2 are discretized 
using standard second-order differencing, e.g.,
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where the Φk,m are the values of Φ at cell centers and 
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with appropriate modifications at physical boundaries for Dirichlet or Neumann boundary conditions.  
This discretization results in a 9 point stencil in 2D and a 27 point stencil in 3D.



The GK Poisson equation is solved self-consistently 
with the gyrokinetic equations as a differential 
algebraic system in TEMPEST
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and solved by the IDA (Implicit Differential Algebraic) 
integrator using variable-order, variable-step backward 
difference formulas.  At the nth time step, we solve
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to a prescribed tolerance using an approximate Newton 
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The gyrokinetic system is expressed in residual form

where

The Generalized Minimum Residual 
(GMRES) algorithm is used to solve the 
preconditioned system

which in turn requires the approximate 
solution of systems of the form

The key step in solving this system is 
therefore the solution of the subsystem

( ) 2123222 rrzJJ +=+

0),,,( =Φ enFFR αα
&



( ) ( ) 0/exp
/exp

22 =Φ
Φ

−+Φ∇ T
T

nZ
nZ

j

jii
iiψρ

),(, k
k

jkjj
uwu θψ∑=

∑
=

Δ

Δ

≡ N

k
B

h

B
h

kj

kjp

kj

kjp

kj

w

1'
),(

),(

),(
),(

,

'

'

θψ
θθψ

θψ
θθψ

( )[ ]j
T
jj DewINL −≡ jdiag

( ) ( )[ ]T
T

D kj
j

j /expdiag
/exp

1
,Φ

Φ
≡

j
jii

j D
T

nZ
N ≡

( )Te 1,,1K≡ ( )TNjjj www ,1, ,,K≡

( )T
jj ewP diag≡

GK Poisson with adiabatic electron model:

where

As described above, the application of the 
Jacobian preconditioner involves the 
approximate solution of the system:
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is a projection onto the null space N(L) of L:
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and j = flux surface index

is a singular operatorL
If ρ is small (i.e., the radial dimension spans 
many gyroradii), the coefficient matrix for the 
Jacobian system

Problem:

( ) rzL =−∇22
ψρ

is nearly singular, which causes Krylov methods 
(e.g., conjugate gradient) to converge poorly

Solution: Decompose the linear solve to avoid 
the operator null space

A subspace decomposition is employed in the preconditioned 
Krylov solution of the GK Poisson system with adiabatic electrons



rPPz =∇22
ψρ

( )( ) ( )rPIzPIL −=−−∇22
ψρ

( ) uArPIAzPI 11
1 )( −− −−=− β

uAv
bAv

T

T

1

1

1 −

−

+
=βjj NA diag22 −∇≡ ψρ

( )TM eNeNu ,,1 K≡ ( )M
T
M

TT DwDwv ,,11 K≡

( ) ( )[ ] rPzPIPzLP =−+−∇22
ψρ

( )( ) ( )[ ] ( )rPIzPIPzLPI −=−+−∇− 22
ψρ

rPPz =∇22
ψρ

( )( ) ( )rPIzPIL −=−−∇22
ψρ

Assuming

Use P to decompose the Jacobian 
preconditioner system into N(L) and N(L)┴:

P and commute:2
⊥∇ρ

Since L is the sum of a diagonal and rank-one 
matrix, the solution of the system

is given by*

where

Since –A is symmetric and positive definite, 
approximations of the vectors A-1(I-P)r and A-1u
are obtained using a preconditioned conjugate 
gradient algorithm.
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*Sherman-Morrison formula: For a general matrix 
A and vectors u and v:

The equation

is a tridiagonal system that can be solved 
directly.

Since the actual gyrokinetic Poisson operator is 
more complicated than the radial Laplacian 
assumed here, which commutes with the 
projection P, a poloidally averaged 
approximation is used instead.

A subspace decomposition is employed in the preconditioned 
Krylov solution of the GK Poisson system with adiabatic electrons



The block-multigrid-preconditioned conjugate gradient 
solve is performed using solvers from the Hypre library
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In each GMRES iteration, the key step is the solution of the linear system:

Preconditioners: block Gauss-Seidel with PFMG or SMG in each block
• Blocks: the logically distinct regions: core, scrape-off, 

private flux
• SMG  (Schaffer semicoarsening multigrid): Uses a 

combination of semi-coarsening, line-relaxation and 
operator-based interpolation

• PFMG: Similar to SMG, but uses pointwise smoothing 
instead of plane smoothing

Since the coefficient matrix is symmetric and negative definite, this system is solved using 
a preconditioned conjugate gradient (PCG) solver.  The PCG solver and preconditioners 
are provided by the Hypre library using the “semi-structured interface”.

These solvers are 
specifically designed for 
robustness and 
efficiency in solving 
linear systems resulting 
from the discretization of 
operators with widely 
varying coefficients.

Hypre documentation and software available at: www.llnl.gov/CASC/linear_solvers/



Example calculation on a diverter geometry

Core

Scrape-off

Private
Flux

Private
Flux

Calculation of initial condition in DIII-D 
poloidal slice

Nonlinear convergence criteria:
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R = dynamic convergence rate estimate

εLE = local error test tolerance

Total number of Newton iterations 5

Total number of GMRES iterations 11

Average number of PCG iterations 
per preconditioner application

10

PCG relative residual tolerance = 10-3
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40 radial cells x 50 poloidal cells = 
2000 spatial unknowns



The GK Poisson solver has been used to validate 
TEMPEST on GAM problems
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