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The TEMPEST edge simulation infrastructure
Includes a gyrokinetic Poisson solver

pyMPI (parallel Python)
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The gyrokinetic Poisson equation

Poisson Equation: g,V D(X,1) = e(ne(X,t) = Z Zn (X,t)j i = ion species index

The ion species number density is the sum of gyrophase-independent and gyrophase-dependent parts:

n,(6t) = 1, (x,) + A, (X, )

/ \

Gyroaveraged gyrocenter density: Polarization density (long wavelength

X limit k, p <<1)
m (X, ) = j f.(R,v,, 4,t)5(R -x+ p)B dRdv,dud g ) mc?
n(xt)=—=V, -(MV, O)(xt1)

eB

Normalizations:

Densities, temperatures, field, masses scaled by reference values n,,T,, B,, m,

Potential scaled by T,/ e
Yo —> Reference gyroradius p,

Lengths scaled by p, and a reference parallel scale length L,

/Normalized GK Poisson equation: \
2
ﬁVL : KZ m.m (X, t)jVL(p(x, t)} + A V2D(X,1) =n (X,t) - Z Z.m(x,1)
A = Debye length scaled by L o
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Mapping physical to flux coordinates introduces spatially
varying coefficients into the GK Poisson operator

Computational domain
mapping EEEEEEEEEEEEEEEN

|::> Flux surface iillllllllllll==
oy GEERRERREES
= 3(1.0.) e EEEEEEEENE

Poloidal angle 6

Physical
domain

Metric factors arise in the GK Poisson differential terms, for example:

oy 0 ), 0 sy 0,0 0 1o(B 2
v, -(B(X)V,) J{aw(‘]‘]“ﬂayx}raw(”“ﬁaej 39( Iaf ,//j ag( J2h ) B@@(JB&@H

where ] E(Vl//xVH-VC)_l Jllf‘VW‘ J,=J=Vy- Vo Jzzz‘v‘g‘

The mapped GK Poisson equation thus takes the form:
Za(J)(W 0)( FO) 4 aaeG”)j:”e(Wﬁ)‘ZZiﬁi(W'g) where

_ . . 0 : : 0 - 0
FU) =| g0 0 +p 0 Dy, 6 GO =|ch) 0 — +d® 0)— Dy, 6
( (v )W (v )aej (v,0) [ (v )ayf (v )aej (v,0)
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The coefficients arising from the metric factors and
meshing are highly anisotropic




The GK Poisson equation is discretized using centered
differencing

Consider a uniform grid with cells indexed by (k,m) of size (4y,,46,). We average the GK Poisson
equation over each cell and apply the divergence theorem

o i j j Vs (Omasz
Akaem ;ak(ﬁ(Fk(fl)/z—Fk(_Jl)/z +G,, - G(’_llz) Ay A9 _[//k Uzj.mm(n (v,0)- ZZ (y/,e)jdwdg

_ _ P _
Fk(irjl)/2,m = J.Fkﬂ/z (am (7 9)%+ b (7 }D(‘//kﬂ/z 0)do

. P .
G(J)+1/2 —_[ (C(J)(l/llgm+1/2)w+d(J)(l//’ hni1/2) aQ]CD(‘// ni2)d W

Al// A@ J"/’Wkk://:-[em://: (J)(l// e)dl//de

= (1)
k,m

where 7},,, and 7, ,,, are the faces of cell (k,m). The fluxes F0,,,,, and GO, , are discretized
using standard second-order differencing, e.g.,

i i @ + -0 i O +1,m+ +® + -0 +1,m- — Dy
Fk(+11)/2,m = A9m|:a(J)(‘//k+1/216)m)—kAl';/ o +bP(,112,6,) e 12(A6:’m - +Ak01'm 1) wn l}
k+1/2 m+1/2 m-1/2

where the @,  are the values of @ at cell centers and

AWy =Ay Ay, ;)12 AO, 1, =(A0+AO, )12

with appropriate modifications at physical boundaries for Dirichlet or Neumann boundary conditions.
This discretization results in a 9 point stencil in 2D and a 27 point stencil in 3D.
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The GK Poisson equation is solved self-consistently
with the gyrokinetic equations as a differential

algebraic system in TEMPEST

The gyrokinetic system is expressed in residual form

.- - od,) — _
Fi+Vd'VlFi‘I-(VHi-FVBanOS)v”Fi +{qﬁ+ua—8—£vnv <&D>—qv3-v<&b>}a?—C(F F)=0

ot o4 B
om,
zlézv |:[ZmiNijvJ_¢):|+ﬁ“2DV2¢ _ne"'zzi(Ni"‘ﬁvipi,ij:

{Zn) _
n, —mexp(d)/Te)—O

and solved by the IDA (Implicit Differential Algebraic)
integrator using variable-order, variable-step backward
difference formulas. At the nt" time step, we solve

ni'«a

k
G(yn)EG(F;,qD,ne)ER(F;'hn—lzg Er N ") =0

to a prescribed tolerance using an approximate Newton
iteration J(yn.,—Yn) =-G(yn)
where

‘Jll ‘]12 0
J{Jﬂ . 1|38 _R ow R

R

N
oF;

0

> R(F,.,F,,®.n)=0

J

The Generalized Minimum Residual
(GMRES) algorithm is used to solve the
preconditioned system

PJ(Ymii = Ym) =—PG(¥n)
which in turn requires the approximate
solution of systems of the form

=10 0z r,
Pz=| 0 J, —-l|z,|=|1 =T
0 J;, I Nz r,

The key step in solving this system is
therefore the solution of the subsystem
(J 2+Jp )22 =h+n f\-e‘dgef
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A subspace decomposition is employed in the preconditioned
Krylov solution of the GK Poisson system with adiabatic electrons

GK Poisson with adiabatic electron model:

(Zin),

V2D +Zn — d/T)=0
where )
h(v;.6,)A0
B, (v;.0k)

<U>J- = ZWj,kU(‘//j ) Wik

N
Z h(yj.6)A0
£ Byl
. . '=1
and j = flux surface index

As described above, the application of the
Jacobian preconditioner involves the
approximate solution of the system:

(Jpp+35)2=(0?V2 =Lz =t
where

L =diag;|N, (1 -ew] D )
1 .
D, = <exp(CD/T)>j dlag[exp(cpj’k /T)]

Problem: L is a singular operator

If pis small (i.e., the radial dimension spans
many gyroradii), the coefficient matrix for the
Jacobian system

(pZVi — L)Z =r
is nearly singular, which causes Krylov methods
(e.g., conjugate gradient) to converge poorly

Solution: Decompose the linear solve to avoid
the operator null space

Since WJTe =1, the operator
P= diagj(ew})

is a projection onto the null space N(L) of L:
P? = diagj(eWJTeWJT )= diagj(eWJT )= P
LP =diag, [(I —ew; Dj)ew}]: 0

PL=diagj[ewJTD,-(| —eW,TDj)]:O M edge
J simulations
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A subspace decomposition is employed in the preconditioned

Krylov solution of the GK Poisson system with adiabatic electrons
|

Use P to decompose the Jacobian
preconditioner system into N(L) and N(L)-:

P(p*V2 —L)[Pz+(1-P)z]=Pr
(1-P)(p?V2 = L)[Pz+(1=P)z]=(1 - P)r

Assuming P and pV? commute:
pZVVZ,PZ =Pr
(022 =L)(1=P)z=(1-P)r

The equation
p°V:.Pz=Pr

is a tridiagonal system that can be solved

directly.

Since the actual gyrokinetic Poisson operator is
more complicated than the radial Laplacian
assumed here, which commutes with the
projection P, a poloidally averaged
approximation is used instead.

Since L is the sum of a diagonal and rank-one
matrix, the solution of the system

(p2V2 —LJ1 -P)z=(1-P)r

is given by*
(1-P)z,=A*(I-P)r—pA"u
where
T aA-1
a2 g _ VAD
A= PV, —diag N, Peirvan

u=(Nge,...Nye) Vv =(wD,...w]D,)

Since —A is symmetric and positive definite,
approximations of the vectors A1(I-P)r and Au
are obtained using a preconditioned conjugate
gradient algorithm.

*Sherman-Morrison formula: For a general matrix
A and vectors u and v: 1
—1
(A+ uv’ ) =A"—aA"W'AT, a=———
1+v A™u

e
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The block-multigrid-preconditioned conjugate gradient
solve is performed using solvers from the Hypre library

In each GMRES iteration, the key step is the solution of the linear system:

3 N.
(J22+J32)22 :{Za(j){ai(a(j)i+b(j)ij+i(0(j)i+d(j)iJ:|— <Z|n|> eXp(q)/Te)}Zz =nL+0
= 4

oy 06 ) 00 Gl 00 )] T.(exp(®/T,))

Since the coefficient matrix is symmetric and negative definite, this system is solved using
a preconditioned conjugate gradient (PCG) solver. The PCG solver and preconditioners
are provided by the Hypre library using the “semi-structured interface”.

Preconditioners: block Gauss-Seidel with PFMG or SMG in each block

» Blocks: the logically distinct regions: core, scrape-off, These solvers are
private flux N specifically designed for

« SMG (Schaffer semicoarsening multigrid): Uses a robustness and
combination of semi-coarsening, line-relaxation and efficiency in solving
operator-based interpolation 7 linear systems resulting

« PFMG: Similar to SMG, but uses pointwise smoothing from the discretization of
instead of plane smoothing J  operators with widely

varying coefficients.

Hypre documentation and software available at: www.lIinl.gov/CASCl/linear_solvers/
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Example calculation on a diverter geometry

Calculation of initial condition in DIII-D
poloidal slice

0.0¢ n =

Nonlinear convergence criteria:
R”yk - yk*1||WRMS <0.ls

1 12
”V”WRMS = [WZ(VI Iw, )2} w' 510‘3‘yi‘+10‘6

1
R = dynamic convergence rate estimate

& = local error test tolerance

PCG relative residual tolerance = 103

40 radial cells x 50 poloidal cells =

Private 2000 spatial unknowns

Flux

Total number of Newton iterations 5
Total number of GMRES iterations 11
Diverter
V ®=0 Average number of PCG iterations | 10
Wall 2 Private per preconditioner application
d=0 Flux
edge
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The GK Poisson solver has been used to validate

TEMPEST on GAM problems

015

Initial 2D fixed n_ pertubation
cause ions/poten. to relax as GAM

Sugama, Watanabe show damping 05[ 4
sensitive to kp,; at large q (bananas) '

TEMPEST example follows the
larger damping from finite kp, and q

GAM damping rate

% Sugama &
/ S Watanabe ‘06
\ kp; =0.1
x /
kp=0

TEMPEST results
10F Velocity mesh 1]
g = 1-03 @y o || —(neny) = (25.50) ]
——(n..n,)=(45,50) |

$(t} / p(t=0)

——(n.,n,)=(91,101) ]|

Time (Ryivy,)

10000

Yrempest = 0-072(v/R)

Ysugama Watanabe
S ‘;

6 P[k,=0.0721, §=0.00, t]

= 0.052(v,/R) -
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