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Abstract

A 5D δf Eulerian gyrokinetic code (EGK) has been developed as a
rapid prototype code for the Edge Simulation Laboratory.  The purpose of this
code is to explore numerical issues associated with the (µ, v||) velocity space
formulation for gyrokinetics and to study physical effects associated with
extensions to full F.  EGK has been successfully benchmarked for ITG/TEM
linear drift wave physics and the collisionless damping of the zonal flow
potential, including kinetic electrons.  Recently, a version of EGK, which
solves the vorticity Poisson constraint equation, has also performed successful
simulations of neoclassical ion transport, including the self-consistent radial
electric field, neglecting the poloidal variation of Φ. Using pitch angle
scattering collisions and assuming the flux tube limit, this simplified code has
reproduced the saturated Er results of Satake et al. (Nuclear Fusion 45, 1362
(2005)), who used a radially global simulation.   Here we present new results
which  extend these studies of neoclassical transport to include the effects of
the poloidal variation of Er and kinetic electron dynamics.  Development of a
unified, global EGK code which solves drift wave physics and neoclassical
physics using the same algorithms is also discussed.



EGK is a prototype gyrokinetic code for ESL based
on the (µ ,v||) velocity space formulation.

  
Motivation:
• EGK is being developed first as a δf code to explore numerical issues and

dissipation algorithms for the (µ ,v||) gyrokinetic formulation.
• Subsequent studies will focus on physical effects associated with

extensions to full F.
Physics Studies/Development:
1) δf linear, electrostatic gyrokinetic simulations including gk electrons

Status: Successfully benchmarked for ITG/TEM linear drift wave physics
and collisionless damping of zonal flows

2) Neoclassical simulations with self-consistent Er

  Using the radially local limit and pitch angle scattering collisions
a) Neglecting the poloidal variation of Φ

Status: Successfully benchmarked against radially global simulations
and standard neoclassical theory

b) Including Φ(θ) and kinetic electron dynamics
 Status: Initial studies complete; qualitative comparisons with theory.…

3) Unified global simulations of drift wave turbulence + neoclassical
transport.



  
I. Linear Gyrokinetic Studies

EGK presently solves the linear δf(R,µ ,v||) gyrokinetic equations in the
electrostatic limit:
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Why explore (µ ,v||) velocity space coordinates?
--------------------------------------------------------------
In comparison with (E,λ) (used in GS21 and GYRO2)
                             or (E,µ) (used in the full F code TEMPEST),
(µ ,v||) coordinates allow for:

- a simpler volume element
- easier implementation of the parallel nonlinearity (an edge effect)

However, the GK eqn in (µ ,v||) coordinates has an additional trapping
term which can be difficult to treat numerically due to the discontinuity in
the distribution function across the trapped/passing particle boundary.
1) CPC 88, 128 (1995), Phys. Rev. Lett. 85, 5579 (2000)        2)  J. Comput. Phys. 186, 545 (2003)



  

 Comparison of EGK with existing δf(R,µ ,v||)
gyrokinetic codes

Radial grid (periodic
or non-periodic b.c.s
but no equilibrium
radial profile
variation), spectral
ky

2D pseudo-spectral
(flux tube)

2D pseudo-spectral
(flux tube)

Perpendicular
Spatial Dimensions

3rd order upwinded
f.d.

5th & 4th order f.d.5th & 4th order
compact f.d.

Phase-Space
Derivatives of f

Linear,
kinetic electrons,
electrostatic

Nonlinear,
adiabatic electrons

Nonlinear,
kinetic electrons,
electromagnetic

Physics

3rd order Heun-RK4th order RK-Gill3rd order Heun-RKTime integration

EGKGKV4

(T. Watanabe &
H. Sugama)

GENE3

(F. Jenko)

3) CPC 125, 196 (2000), CPC 163, 67 (2004), Plas. Phys. Cont. Fus. 47, B195 (2005)
4) Nucl. Fus. 46, 24 (2006)



EGK has been successfully benchmarked with the
GS2 code for ITG/TEM linear drift wave physics.

  

EGK velocity grid:
µ/(vts

2/2B0) ∈ [0,25]
                     nµ =21
v||/vts ∈ [-5,5]
                     nv||=41

GS2: nλ=37, nE=16

DIII-D Cyclone Base 
Case Parameters:
s-α geometry
r/R=0.18
q=1.388
s=0.8
α=0
R/Lni=R/Lne=2.2
T0i=T0e
kyρi = 0.4
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 Tests of the collisionless damping of the zonal
flow potential were also successful.

  

q    = 1.388, r/R = 0.18, kxρi= 0.1
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5) Phys. Rev. Lett. 80, 724 (1998)



v||/vte

v||/vte

R
e 

h e
 / 

R
e 

h e
(v

||=
0)

Im
 h

e /
 Im

 h
e(v

||=
0)

 EGK has been used to explore various numerical
algorithms for the (µ ,v||) gyrokinetic formulation.

With non-dissipative
schemes, high velocity
space resolution is
needed to reduce the
numerical Gibbs
oscillations which
develop in the trapped
region and result in
inaccuracies in the
ITG/TEM growth
rates.

δf=F0h at fixed θ=π/2 and µ/(vte
2/2B0)=25

The behavior of f across the trapped/passing
boundary using a 2nd order centered scheme
for the parallel velocity derivative

trapped region
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 A better approach is needed for the treatment of the parallel
velocity derivative across the trapped/passing boundary.

Main Numerical Issues:
1) Stepping over the

boundary when
computing the
derivative

2) One or few points
in the trapped
region

3) None or few points
in the passing
region
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simulation (r/R=0.54)



 For now, the best approach is a standard higher-
order upwinded finite difference scheme.

nµ=11, nv||=21 nµ=21, nv||=41
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The upwinded scheme
yields a smoother
solution and more
accurate growth rate
for coarser grid
resolution but tends to
smear the solution at
the discontinuities.
The WENO result is
similar.

Comparison of a centered scheme, an
upwinded scheme, and a WENO scheme



II. Neoclassical Transport Studies
Separate F into a Maxwellian component F0 + a perturbed component f

resulting from magnetic drifts and spatial inhomogeneities.
Steady-state simulation for f.

This builds on the
work of Wang et al.6
and Satake et al.7
but includes kinetic
electrons and the
poloidal variation of
Φ.
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6) Phys. Plasmas 13, 082501(2006)

7) Nucl. Fus. 45, 1362 (2005)

not solved: F0=FM

Add the
neoclassical
driving term

to the δf
kinetic eqn



Initial studies including the neoclassical self-
consistent Er assume Φ≠fnc(θ).

This is a radially local
problem using a fixed
constant value for the
equilibrium density and
temperature gradients.
It requires no Poisson
equation coupling.

This problem was solved by Wang et al. & Satake et al. (retaining the
FOW term and using a radially global simulation) via coulping the kinetic
eqn with the vorticity constraint eqn                                          to compute a
saturated Er

0 which corresponds to zero parallel ion flow.

However, more generally, it can be solved as above without the vorticity
constraint eqn coupling and can be viewed as the solution of the saturated
f (and associated moments like u||) for a given equilibrium Er

0.
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Using pitch angle scattering collisions, our
local code has been successfully benchmarked.

Er
0=0 Including Er

0(vorticity eqn coupling)

r/a=0.2
r/a=0.5
r/a=0.85
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(solid lines are analytic
predictions of Lin et al.8)

R/LT=0.0
R/LT=6.9

r/R=0.18   ρ/R=0.001
q=1.388    R/Ln=2.2

8) Phys. Plasmas 2, 2975 (1995)

Agrees with Satake et al.7 fig. 4

R/a=4.0   ρ/a=0.0039    n, T vary
q=3.0      ν/vti/a=0.1     R/Ln, R/LT vary



These neoclassical studies have recently been
extended to include the poloidal variation of Φ.
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Next order (poloidal)
corrections are still
solved as a radially
local problem but now
involve Poisson eqn
coupling.

For adiabatic electrons:
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In agreement with analytical theory, we find that δΦ
varies sinusoidally and depends on the collisionality.

Er
0 = 0.0

R/LT = 6.9
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Operating on kinetic
eqn with

yields (in steady
state):

Using that

δΦ(θ)=Csin(θ):
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Unlike the lowest order problem, the radial particle
flux with poloidal variation included is not exactly zero.

Er
0 = 0.0

R/LT = 6.9
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Operating on the
kinetic eqn with
∫d3v yields (in
steady-state):
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The resulting effect on the poloidal variation of the ion
parallel ion flow has also been studied.

linear
dependence on
the equilibrium

gradients
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Overall, we find that the poloidal variation of the
potential is weak, as expected, as are its effects.

The total potential scales as:
Φ~-rEr

0 (1+h),where h << 1
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The effects of kinetic electron dynamics are
also being studied.

The kx=0 Poisson eqn becomes:

(i.e. no explicit Φ dependence)

Thus, numerical solution of the kinetic+Poisson equations
requires an implicit algorithm.
We use a semi-implicit algorithm in which the parallel free-streaming
dynamics are treated implicitly, while all other dynamics are treated
explicitly.

Note that our previous prediction of the steady-state radial
particle flux holds independently for both ion and electron
species, so the plasma will be ambipolar.



< 
u ||

,e
 B

p /
 v

ti 
B

o>
< 

Q
e /

 n
0i

 v
ti 

T o
i>

R/LT

R/LT

δΦ=0, δΦ(θ)

R/LT

Preliminary results indicate that, while the poloidal variation
of the potential does not significantly affect the ion dynamics,

it does produce an enhanced electron heat flux.

This effect on Q qualitatively
agrees with the analytical
results of Stringer et al.10  The
resulting bootstrap also
qualitatively agrees with the
Rosenbluth-Hazeltine
prediction11.

10) Phys. Fluids B 3, 981 (1991)          11) Phys. Fluids 15, 116 (1972)
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A more realistic collision
operator is needed for
direct comparisons with
analytic neoclassical
theory.  This will be
explored next.  Here we
have modified the R-H
coeff for the temp. gradient
to be the same as for the
density gradient.



The next step is to add finite kx effects.
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This includes the
effects of the finite
orbit width term,
which Wang et
al.6 showed can be
significant for
NSTX plasmas.
This problem
requires a global
simulation with
equilibrium
profile variation.

Can the Poisson eqn for the neoclassical
problem  be solved using the same

algorithms as for drift waves?



Here we write the LHS operator of the
Poisson eqn as -∂2Φ/∂r2 and enforce the
conditions ∑Φ=0, ∑rΦ=0.  The FOW term
is neglected and we use a set of radially
local equilibrium parameters.  This should
produce a small correction to the
equilibrium Er

0 which is approximately
radially constant.   However, instead, the
equilibrium Er

0 corresponding to zero
parallel ion flow is regenerated at small
time scales and then an unphysical global
mode with a definite radial structure
develops.  The level of the saturated Er for
this mode is found to be determined by the
b.c.s.

As we move toward a unified drift wave + neoclassical
transport code, a primary issue will be the radial b.c.s for Φ.

Drift wave turbulence generally uses zero radial boundary conditions.
However, for the neoclassical problem, we find that the choice of the radial

b.c.s can induce unphysical global modes on the long time scale.
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Equilibrium-scale zero u||,i soln.

This implies that a different approach is needed for solving the Poisson eqn
for the neoclassical potential.



Summary of EGK Results

Next Studies: Unified Simulations of Drift Wave Turbulence
and Neoclassical Transport

Linear Gyrokinetics:
EGK solves the linear δf (r,θ,ky,µ,v||) GK eqns in the electrostatic limit.  It
includes gyrokinetic electrons and trapped particle dynamics.

• Successful benchmarks of ITG/TEM linear drift wave physics &
collisionless damping of zonal flows have been completed.

• Velocity space dissipation algorithms for (µ,v||) have been explored.
We find that a careful numerical treatment of the trapping term is
needed.

Neoclassical Transport:
EGK solves the linear δf drift kinetic with the neoclassical driver using the
radially local limit and a pitch angle scattering collision operator.

• Successful benchmarks of Er neglecting the poloidal variation of Φ
and coupling with the vortivity constraint eqn. have been completed.

• New extended studies including the poloidal variation of Φ and
kinetic electron dynamics indicate that the poloidal variation is weak
and does not significantly affect the ion dynamics, but does enhance
the electron heat flux.  This agrees qualitatively with analytic
neoclassical theory.


