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Fully nonlinear ion gyrokinetic equation has
been cast in E°-p coordinates

ot + Va- 9%, + '1}”.:; + UBanos | b - ('}3{
a(®’y 8B B _ 9o 0 .| OF%
— — — V{dg))
+ [q 5 TPy~ B, — Vd (aV{09)) 7E
= C(Fy Fa),
_ ch _ - o Mae
Vda = /B x (gV(®) + gV B) + L" B |?><I:-1
9 = L (VD) + GVB) + P (T xh).
d — gB* q L I QB"
v = \JF'EU pB —q(27%),
VBanos — %I\btv}{b}!
. b = 1. qB M,v?
Bj, = Bl1+m-w”?xb; llon = 3o M= T

(68) = (@) —(3°).

v'The field is split into two parts: ®° and &¢;
v EO=mv?/2+q®,, a constant of motion if §¢~0 and a coordinate aligned with flow;
v'E%XB flow terms and the slow variation ®° from Qin’s formulation will beadded.



Fully nonlinear gyrokinetic Poisson equation---
In collaboration with Hong Qin
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F (x,w,u) -- total gyrocenter distribution function. M. (x) = fzwwdwdu W (x,W,u).
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=1 (V2w
Qin, Cohen, Nevins, and Xu, Contrib. Plasma Phys. 46, 7-9, 477 (2006) - ZO: [ éQZ




Fully nonlinear gyro-kinetic Poisson equation In
the long wavelength limit

In the long wavelength limit &, p, < 1, the self-consistent electromagnetic field are typically
computed from the gyro-kinetic Poisson equation for the multiple species
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where the gyrocenter center density /N, and perpendicular ion pressure p,,, are defined by
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The n, and T, are the normalization density and temperature. The ion gyroradius is p, =
V27T 1q /M, /S, the ion gyrofrequency is Q, = Z,eB/M,c, and the ion Debye length is A}, =
T\ /AT, Z2€%,
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vIf the first-order Pade approximation to I'y = 1/(1 + b) for the modified Bessel fungtion
is used, then the same field solve will be used in the arbitrary wavelength regime.



We have desighed and implemented a 4D
edge simulation framework
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We have implemented a gyrokinetic
Poisson equation field solver
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 Discretized in y-0 coordinates using standard finite differencing

 Uses Hypre library of parallel linear algebra solvers and
preconditioners

— Solvers:
 Conjugate Gradient (CG)
* Generalized Minimum Residual (GMRES)
» Stabilized BiConjugate Gradient (BiCGSTAB) .

— Preconditioners
« Diagonal scaling
» Block Gauss-Seidel with PFMG or SMG in each block - o
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 Currently implemented with both Boltzmann electron model and ¢
Kinetic electron model




Tempest exhibits collisionless damping
of GAMs and zonal Flow

« Axis-symmetric mode (no toroidal o ¢(t|)/¢(t?0) _—
variation) _ _ o} Rosenbluth-Hinton |
— Parallel ion dynamics —— Residual zonal flow |
— Magnetic curvature -
— Acceleration I cs=r/R=0.2

Magnetic curvature
= TEMPEST should see GAMs
« Tempest model

— Drift kinetic ions with radial drift,
streaming, and acceleration

— Boltzmann electron

— Gyrokinetic Poisson equation in
limit small r /L,

— Periodic radial boundary

conditions —U.0 _ _
« GAMs provide opportunity to “verify” ' n\l!_32’n9_64
TEMPEST physics P
Time(v,/R,)



TEMPEST shows that damping of GAMs
follows theory with large banana orbits
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|9“(k;ps=0.15, 6=0,1) v'Sugama & Watanabe show
S e damping sensitive to kp, at large g

IOOO o
| (large banana orbit)

_ v Tempest show reasonable
v=1.8e4 sec™ agreement with theory, 20%.
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Frequency and damping rate in GAMs
simulations converge with velocity resolution
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High poloidal resolutions eliminate the
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GAMs simulations scan with g
show good agreement with RH residual
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Frequency and damping rate vs g in GAMs simulations
In reasonable agreement with small € theory

Simulations/theory comparisons

q gamma Omega
3 1.8e4/2.35e4 4.3e5/5.41e5
6 6.0e3/0 4.2e5/5.25e5
9 3.5e3/0 4.2e5/5.25e5
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Tempest and EGK benchmarking of frequency and
damping rate in GAMs simulations

g=3 and ¢=0.2, Ti=3keV, R=1.71m, deuterium ion, circular geometry

RH=1/(1+1.692%/e?)

®(Hz) v(Hz) Residual
Tempest 4.3e5 1.8e4 0.03
Theory: SW |5.41e5 2.35e4 0.03
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Residual vs € In GAMs simulations
In good agreement with RH theory
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TEMPEST yields a self-consistent neoclassical
Er via GKP with Boltzmann electrons

<E.>(keV/m)

' theory (plateau)
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---- theory (collisional)
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v'In circular geometry
v'Large aspect ratio
v'Boltzmann electrons
v'Krook collision

v'plateau regime
v True steady state

vInitial GAMs followed by
neoclassical Er
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TEMPEST shows GAMS and collisional
relaxation to neoclassical Er
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Summary

TEMPEST is a fully nonlinear (full-f) five dimensional (3d2v)
gyrokinetic continuum edge-plasma code, demonstrated in circular
geometry:

The four-dimensional (2d2v) version of the code correctly produces
frequency, collisionless damping of geodesic acoustic modes and
zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons
using a full-f code in small g limit

The electric field is also found to agree with the standard
neoclassical expression for steep density and ion temperature
gradients in the plateau regime

Experimental measurements of GAMs damping rate is extremely
valuable to understand basic GAMs dynamics, as done in the
Tempest simulations by giving an initial perturbation and following
its relaxation.
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