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TEMPEST: fully nonlinear (fullTEMPEST: fully nonlinear (full--f) continuum f) continuum 
ki tiki ti t t d t b lt t d t b l ddgyrokinetic gyrokinetic transport and turbulence transport and turbulence codecode

• Solve for the particle distribution 
function f(ψ,θ,ξ,E,μ,t) (avg. over 
gyration: 6D 5D)

• 2D or 3D configuration space
• 2D – velocity space (E0,μ)
• Solving GK field equations for 

Φ(ψ,θ,ξ,t) using HYPRE(ψ, ,ξ, ) g
• Realistic toroidal geometry, kinetic 

ions & electrons, electrostatic 
fluctuations, collisions, sophisticated , , p
algorithms.

In this talk, we focus on 4D and divertor geometry
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TEMPEST neoclassical simulations with an 
anomalous radial diffusion coefficient D (k-uedge)anomalous radial diffusion coefficient D (k uedge)
Single ion dynamical species with no φ and no recycling

Radial neoclassical  + anomalous D

Kinetic parallel flowKinetic parallel flow

Boundary conditions:Z(m)

FM with fixed Ni, Ti  and U||i=0 at core side
Zero radial gradient: dF/dψ=0, at the wall and PVT

Absorbed divertor plates boundary condition 

For given boundary conditions the goal is to

R(m)

For given boundary conditions, the goal is to 
Find a steady state kinetic solution in pedestal



TEMPEST shows a steady state Ti with an 
l D 1 0 2/ d N 1 1019/ 3anomalous D=1.0 m2/s and Ni=1x1019/m3
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TEMPEST shows a different ion neoclassical 
t t ffi i t f D dtransport coefficients for D and χ
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The D-scan of ion temperature Ti profile
large D spreads heat on the divertor plateslarge D spreads heat on the divertor plates
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The D-scan of ion parallel heat flux Q||i
large D spreads heat on the divertor plateslarge D spreads heat on the divertor plates
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The large D broadens radial ion temperature profiles both 
at midplane and at plates

i l l id l h itwo spatial scales at midplane across the separatrix
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The large D broadens radial density profiles both at 
midplane and at plates and makes the plates densermidplane and at plates and makes the plates denser
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The large D broadens radial parallel heat flux Q||i profiles 
both at midplane and at plates

P k h t fl i f th i th SOL d t fi it bit iPeak heat flux is further in the SOL due to finite orbit size
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The large D increases poloidal uniformity of density profile 
in the bulk plasma; possibly due to the relative role of 

diffusion vs convection/radial drift 
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The large D increases poloidal uniformity of Ti profile in the bulk plasma; 
possibly due to the relative role of diffusion vs convection/radial drift p y

Ti increases towards the plates below x-point
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The large D decreases U||i at midplane due to flattening 
profiles and increases U||i at plates (leading to fluid results)profiles and increases U||i at plates (leading to fluid results) 
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The large D decreases Q||i at midplane due to flattening 
profiles and increases Q||i at plates (leading to fluid results)profiles and increases Q||i at plates (leading to fluid results)
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The anomalous D plays a role as collisional de-correlation, 
which makes transition from kinetic to fluid regimewhich makes transition from kinetic to fluid regime
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The anomalous D plays a role as collisional de-correlation, 
which makes transition from kinetic to fluid regimewhich makes transition from kinetic to fluid regime

U /v Q /P /v

Parallel fluxes at midplane follows neoclassical, while at divertor plates follows fluid
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TEMPEST shows a steady state non-Maxwellian Fi
ith l D 1 0 2/ d N 1 1019/ 3with an anomalous D=1.0 m2/s and Ni=1x1019/m3
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The D-scan of ion distribution function Fi at midplane
TEMPEST shows that large D leads to MaxwellianizationTEMPEST shows that large D leads to Maxwellianization
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TEMPEST shows a steady state non-half-Maxwellian Fi at 
plates possibly due to residual collision from slow particles & exotic orbitsplates, possibly due to residual collision from slow particles & exotic orbits
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TEMPEST neoclassical simulations with anomalous 
D f b t lli i iD span from banana to collision regimes
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The higher density higher collision yields a 
similar T steady state as the large Dsimilar Ti steady state as the large D
Ni=1Х1019/m3
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The higher density higher collision yields a 
similar T steady state as the large Dsimilar Ti steady state as the large D
Ni=1Х1019/m3
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The higher density higher collision yields a 
similar Q steady state as the large Dsimilar Q||i steady state as the large D
Ni=1Х1019/m3
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SummarySummarySummarySummary

• TEMPEST calculates steady state ion distribution function using a full f• TEMPEST calculates steady state ion distribution function using a full-f 
code in divertor geometry with sources and sinks at boundaries.

• TEMPEST shows 
– Ti is broader than density due to finite ion orbit size, with two spatialTi is broader than density due to finite ion orbit size,  with two spatial 

scales at midplane across the separatrix due to the endloss

– The anomalous D plays a role as collisional de-correlation, large radial 
diffusion coefficient D leads to Maxwellianization

– large D decreases U||i and Q||i at midplane (following neoclassical 
relationship), increases U||I and Q||i (leading to conventional fluid 
relationship) at plates

– higher density higher collision yields a similar Ti steady state as the
large anomalous diffusion coefficient D

• Activating, benchmarking and validating Tempest's multiple species
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Activating, benchmarking and validating Tempest s multiple species 
features will lead to a full kinetic edge simulation code, including impurities 
and neutrals with different charge Z. and mass M


