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Principal Results

The four-dimensional (2d2v) version of the code correctly
produces frequency, collisionless damping of geodesic
acoustic modes and zonal flow (Rosenbluth-Hinton residual)
with Boltzmann electrons using a full-f code in small ¢ limit

The electric field via Gyrokinetic Poisson Eq is also found to
agree with the standard neoclassical expression for steep
density and ion temperature gradients in the plateau regime
with Boltzmann electrons

The preliminary encouraging results demonstrates the
emerging capability of the TEMPEST code.



TEMPEST, a fully nonlinear (full-f)
gyrokinetic continuum code

5D ( y,0,C,E,, p) continuum code; part of
Edge Simulation Laboratory(ESL) project

Realistic X-point divertor geometry

— Open + closed flux surfaces
an implicit backward-differencing scheme
in time

— using a Newton-Krylov iteration
Higher order accuracy in phase space:

— spatial derivatives: finite differences

* Fourth order upwinding & Weno
scheme

— finite volume method is used in velocity
space (E,, M) for FP collision

Uses Hypre library of parallel linear algebra
solvers and preconditioners




Fully nonlinear ion gyrokinetic equation
has been cast Iin E;-p coordinates
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v'The field is split into two parts: ®° and 6¢;
vE,=mv?/2+q®?, a constant of motion if 5¢~0 and a coordinate aligned with flow;
vE,xB flow terms and the slow variation ®° from Qin’s formulation will be added.



Fully nonlinear gyro-kinetic Poisson
equation in the long wavelength limit

In the long wavelength limit &, p, < 1, the self-consistent electromagnetic field are typically
computed from the gyro-kinetic Poisson equation for the multiple species
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where the gyrocenter center density /N, and perpendicular ion pressure p,,, are defined by
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The n, and T, are the normalization density and temperature. The ion gyroradius is p, =
V27T 1q /M, /S, the ion gyrofrequency is Q, = Z,eB/M,c, and the ion Debye length is A}, =
T\ /AT, Z2€%,

v'Diamagnetic density is included;

VIt is fully nonlinear since the N, and P, are calculated from F;

vIf the first-order Pade approximation to I', = 1/(1 + b) for the modified Bessel function
is used, then the same field solve will be used in the arbitrary wavelength regime.



We have designed and implemented a SD
edge simulation framework
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Spatial convection using 4t" order upwinding and
5th order Weno scheme
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We have implemented a gyrokinetic
Poisson equation field solver
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 Discretized in y-0 coordinates using standard finite differencing

 Uses Hypre library of parallel linear algebra solvers and
preconditioners
— Solvers:
« Conjugate Gradient (CG)
* Generalized Minimum Residual (GMRES)
» Stabilized BiConjugate Gradient (BiCGSTAB) o

— Preconditioners
« Diagonal scaling y
« Block Gauss-Seidel with PFMG or SMG in each block
e BoomerAMG )

* Currently implemented with both Boltzmann and kinetic electron
model




Tempest simulations of the radial electric
field dynamics in neoclassical plasmas

« Tempest simulations of collisionless
damping of geodesic acoustic modes
and zonal flow in uniform plasmas

e Tempest simulations of the radial
electric field via Gyrokinetic Poisson
Eq with steep gradients in the edge
plasmas



GAM is dominant in the edge plasmas

+  GAM and zonal flow has been clearly o10p — 009000me 4 =550
identified experimentally in tokamak and = oosf — 1000-1100 ms (g = 4.95]
stellarator plasmas CH: T 2001300 me (4 = 458
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Tempest exhibits collisionless
damping of GAM and zonal Flow

Tempest model

— Drift kinetic ions with radial drift,
streaming, and acceleration

— Boltzmann electron

— Gyrokinetic Poisson equation in
limit small p./L,

— Periodic radial boundary
conditions

GAM provide opportunity to “verify”
TEMPEST physics and to “extend”
parameter regimes beyond analytical
theory

Simulation setup:

— Homogeneous plasma with initial dn, — '

on,=on,sin(2 zr/L,)

o(t)/o(t=0)
| Roslenblutlh—Hinton

- Residual zonal flow |

e=r/R=0.2

Time(v,/R)




TEMPEST shows that damping of GAM
follows theory with large banana orbits
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v'Sugama & Watanabe show
damping sensitive to kp; at large q
(large banana orbit)

v Tempest shows reasonable
agreement with theory, 17%.
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Frequency and damping rate in GAM
simulation converge with velocity resolution
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High poloidal resolution eliminates the

P(t=o0) /P(t=0)

recurrences
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GAM simulation scan with g
shows good agreement with RH residual
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Frequency and damping rate vs g in GAM simulations
in reasonable agreement with small ¢ theory

GAM Amplitude (a.u.)
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Residual vs € In GAM simulations In
_good agreement with RH theory
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Residual vs € In GAM simulations In
reasonable agreement with theory
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Tempest simulation shows good agreement

theory
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TEMPEST solves Gyrokinetic Poisson Eq in a
steep gradient region
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v'In circular geometry
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TEMPEST simulation show that initial GAM
followed by self-consistent neoclassical Er

< r> < 46\// N > (I)(t)(V) v'Er is generated due to

neoclassical polarization
/‘ proerrrre
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v'True steady state
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relaxation in edge plasma with steep gradients

TEMPEST shows GAM and collisional
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Summary

The four-dimensional (2d2v) version of the code correctly produces
frequency, collisionless damping of geodesic acoustic modes and
zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons
using a full-f code in small € limit

The electric field via Gyrokinetic Poisson Eq is also found to agree
with the standard neoclassical expression for steep density and ion
temperature gradients in the plateau regime with Boltzmann and
kinetic electrons

The preliminary encouraging results demonstrates the emerging
capability of the TEMPEST code. The further improvement and
development of TEMPEST will yield a valuable predictive model for
the edge pedestal.
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